Domination in Jahangir graph J_{2,m}
نویسندگان
چکیده
منابع مشابه
Domination in Jahangir Graph
Given graph G = (V,E), a dominating set S is a subset of vertex set V such that any vertex not in S is adjacent to at least one vertex in S. The domination number of a graph G is the minimum size of the dominating sets of G. In this paper we study some results on domination number, connected, independent, total and restrained domination number denoted by γ(G), γc(G) ,γi(G), γt(G) and γr(G) resp...
متن کاملOn Some Chromatic Properties Of Jahangir Graph
1.1 In this note we compute the chromatic polynomial of the Jahangir graph J2p and we prove that it is chromatically unique for p = 3. AMS Subject classification: 05C15
متن کاملOn exponential domination and graph operations
An exponential dominating set of graph $G = (V,E )$ is a subset $Ssubseteq V(G)$ such that $sum_{uin S}(1/2)^{overline{d}{(u,v)-1}}geq 1$ for every vertex $v$ in $V(G)-S$, where $overline{d}(u,v)$ is the distance between vertices $u in S$ and $v in V(G)-S$ in the graph $G -(S-{u})$. The exponential domination number, $gamma_{e}(G)$, is the smallest cardinality of an exponential dominating set....
متن کاملDomination number of graph fractional powers
For any $k in mathbb{N}$, the $k$-subdivision of graph $G$ is a simple graph $G^{frac{1}{k}}$, which is constructed by replacing each edge of $G$ with a path of length $k$. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$, denoted by ...
متن کاملDOMINATION NUMBER OF TOTAL GRAPH OF MODULE
Let $R$ be a commutative ring and $M$ be an $R$-module with $T(M)$ as subset, the set of torsion elements. The total graph of the module denoted by $T(Gamma(M))$, is the (undirected) graph with all elements of $M$ as vertices, and for distinct elements $n,m in M$, the vertices $n$ and $m$ are adjacent if and only if $n+m in T(M)$. In this paper we study the domination number of $T(Gamma(M))$ a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Contemporary Mathematical Sciences
سال: 2007
ISSN: 1314-7544
DOI: 10.12988/ijcms.2007.07122